Gödel’s beta function


Gödel’s β functionMathworldPlanetmath is the tool needed to express in a formal theory Z assertions about finite sequencesPlanetmathPlanetmath of natural numbersMathworldPlanetmath. (For a description of Z see the PM entry "beyond formalism: Gödel’s incompletenessMathworldPlanetmath" (http://planetmath.org/BeyondFormalism)).

Let

1,,n.

be a sequenceMathworldPlanetmath of natural numbers. Then there is the factorial n! such that

n(n-1)1=n!.

This means that the factorial n! is divided by each of the elements of

1,,n

so that we can build the derived sequence

1n!,2n!,,nn!.

Definition 1  [Gödel’s Γ sequence]

If we denote n! by l then the elements of Gödel’s Γ sequence are the numbers of the form

(k+1)l+1.

Its general representation is

Γ=1l+1,2l+1,,nl+1,(n+1)l+1.

Theorem 1:

The elements of Γ are pairwise relatively prime.

Proof: (Reductio)

  1. 1.

    We assume the existence of a prime numberMathworldPlanetmath p such that p divides

    (j+1)l+1

    and p divides also

    (j+k+1)l+1.
  2. 2.

    This gives by definition the congruenceMathworldPlanetmathPlanetmathPlanetmath

    [(j+k+1)l+1][(j+1)l+1](modp)
  3. 3.

    Therefore p divides

    [(j+k+1)l+1]-[(j+1)l+1].
  4. 4.

    Then p divides

    jl+kl+l+1-jl-l-1,

    that is, p divides kl.

  5. 5.

    But

    pklpkpl.

Case I: Assume pl

  1. 1.

    plpl(j+1).

  2. 2.

    But by hypothesisMathworldPlanetmath: p(j+1)l+1.

  3. 3.

    Therefore: (pl).

Case II: Assume pk

  1. 1.

    knmax(1,,n).

  2. 2.

    But (k)kl.

  3. 3.

    pkklpl

Case I.3. and Case II.3. are the desired contradictionMathworldPlanetmathPlanetmath.

Definition 2:  [Gödel’s β function]

If m,l, and k are natural numbers then the function

β(m,l,k)

computes the rest of the division of m by a term (k+1)l+1

of the Γ-sequence.

Therefore: β(m,l,k)=R[m,(k+1)l+1].

Theorem 2:  [Sequences of natural numbers are representable by the β function.]

<ao,,an>(m)(l)[ak=β(m,k,l)].

Proof:

  1. 1.

    Let

    ao,,an

    be a sequence of natural numbers.

  2. 2.

    Then there is a number l such that

    Γ=1l+1,2l+1,,nl+1,(n+1)l+1.
  3. 3.

    If lmax(ao,,an).

  4. 4.

    Then ak<(k+1)l+1.

  5. 5.

    But by the previous propositionPlanetmathPlanetmath the numbers

    (k+1)l+1

    are pairwise relatively prime.

  6. 6.

    This implies that the simultaneous congruences

    xao[(mod1l+1)]
    xan[(mod(n+1)l+1)]

    have a common solution m, by the chinese remainder theoremMathworldPlanetmathPlanetmathPlanetmath.

  7. 7.

    Therefore

    mak[(mod(k+1)l+1)].
  8. 8.

    This means that

    ak=R[m,(k+1)l+1].
  9. 9.

    But that is

    ak=β(m,l,k).

It is easily seen that the β function is primitive recursive.

For that we only have to redenominated m,l and k as:

m=x1l=x2k=x3.

Then β(x1,x2,x3)=R[x1,(x3+1)x2+1].

But the functions "+", "" e "R" are primitive recursive.

Therefore β is primitive recursive.

References

  • 1 Bernays, P., Hilbert, D., Grundlagen der Mathematik, 2.Auflage, Berlin, 1968.
  • 2 Gödel, K., Collected works, ed. S. Feferman, Oxford, 1987-2003.
  • 3 Kleene, S., Introduction to metamathematicsMathworldPlanetmathPlanetmath, North-Holland, Amsterdam, 1964.
Title Gödel’s beta functionDlmfDlmfMathworldPlanetmath
Canonical name GodelsBetaFunction
Date of creation 2013-03-22 18:34:57
Last modified on 2013-03-22 18:34:57
Owner gribskoff (21395)
Last modified by gribskoff (21395)
Numerical id 18
Author gribskoff (21395)
Entry type Definition
Classification msc 03A05
Classification msc 03-01
Classification msc 11A07
Synonym representation of sequences in formal systems
Related topic ChineseRemainderTheorem
Related topic BeyondFormalism
Related topic FromHilbertsTenthProblemToGodelsTrichotomy
Related topic LinearCongruence
Defines gamma sequence