if d(xi,xi+1)<1/2i then xi is a Cauchy sequence


Lemma 1.

Suppose x1,x2,, is a sequence in a metric space. If for some N1, we have d(ai,ai+1)<1/2i for all iN, then {xi} is a Cauchy sequenceMathworldPlanetmathPlanetmath.

Proof.

Let us denote by d the metric function. If ε>0, then for some N we have 1/2N<ε. Thus, if N<m<n we have

d(xm,xn) d(xm,xm+1)++d(xn-1,xn)
= (12)m++(12)n-1
= (12)m-1i=1n-m(12)i
= (12)m-11-(12)n-m1-12
< (12)m
< (12)N
< ε,

where we have used the triangle inequalityMathworldMathworldPlanetmathPlanetmath and the geometric sum formula (http://planetmath.org/GeometricSeries). ∎

Title if d(xi,xi+1)<1/2i then xi is a Cauchy sequence
Canonical name IfDxiXi112iThenXiIsACauchySequence
Date of creation 2013-03-22 14:37:31
Last modified on 2013-03-22 14:37:31
Owner matte (1858)
Last modified by matte (1858)
Numerical id 5
Author matte (1858)
Entry type Result
Classification msc 26A03
Classification msc 54E35