integral over a period interval
Theorem.β If the real function is periodic and integrable (http://planetmath.org/RiemannIntegrable) over a period (http://planetmath.org/Periodic) interval, the value of integral over a period interval is always the same, i.e.
(1) |
where is the period of .
Proof.β The right hand side of the equation (1) is manipulated, with one substitution (http://planetmath.org/ChangeOfVariableInDefiniteIntegral) β:
References
- 1 Ernst LindelΓΆf: Johdatus korkeampaan analyysiin. Fourth edition. Werner SΓΆderstrΓΆm OsakeyhtiΓΆ, Porvoo ja Helsinki (1956).
- 2 FrΓ₯ga Lund om matematik, http://www.maths.lth.se/query/here.
Title | integral over a period interval |
---|---|
Canonical name | IntegralOverAPeriodInterval |
Date of creation | 2013-03-22 18:43:57 |
Last modified on | 2013-03-22 18:43:57 |
Owner | pahio (2872) |
Last modified by | pahio (2872) |
Numerical id | 7 |
Author | pahio (2872) |
Entry type | Theorem |
Classification | msc 26A15 |
Classification | msc 26A42 |
Synonym | integral over a period |
Synonym | integral of periodic function |
Related topic | DefiniteIntegral |
Related topic | IntegralsOfEvenAndOddFunctions |