integral over a period interval
Theorem.β If the real function is periodic and integrable (http://planetmath.org/RiemannIntegrable) over a period (http://planetmath.org/Periodic) interval, the value of integral over a period interval is always the same, i.e.
| (1) |
where is the period of .
Proof.β The right hand side of the equation (1) is manipulated, with one substitution (http://planetmath.org/ChangeOfVariableInDefiniteIntegral) β:
References
- 1 Ernst LindelΓΆf: Johdatus korkeampaan analyysiin. Fourth edition. Werner SΓΆderstrΓΆm OsakeyhtiΓΆ, Porvoo ja Helsinki (1956).
- 2 FrΓ₯ga Lund om matematik, http://www.maths.lth.se/query/here.
| Title | integral over a period interval |
|---|---|
| Canonical name | IntegralOverAPeriodInterval |
| Date of creation | 2013-03-22 18:43:57 |
| Last modified on | 2013-03-22 18:43:57 |
| Owner | pahio (2872) |
| Last modified by | pahio (2872) |
| Numerical id | 7 |
| Author | pahio (2872) |
| Entry type | Theorem |
| Classification | msc 26A15 |
| Classification | msc 26A42 |
| Synonym | integral over a period |
| Synonym | integral of periodic function |
| Related topic | DefiniteIntegral |
| Related topic | IntegralsOfEvenAndOddFunctions |