Lebesgue integral over a subset of the measure space


Let (X,𝔅,ΞΌ) be a measure spaceMathworldPlanetmath and Aβˆˆπ”….

Let s:Xβ†’[0,∞] be a simple functionMathworldPlanetmathPlanetmath. Then ∫As⁒𝑑μ is defined as ∫As⁒𝑑μ:=∫XΟ‡A⁒s⁒𝑑μ, where Ο‡A denotes the characteristic functionMathworldPlanetmathPlanetmathPlanetmathPlanetmath of A.

Let f:Xβ†’[0,∞] be a measurable functionMathworldPlanetmath and
S={s:Xβ†’[0,∞]|sΒ is a simple function andΒ s≀f}. Then ∫Af⁒𝑑μ is defined as ∫Af⁒𝑑μ:=sups∈S⁑∫As⁒𝑑μ.

By the properties of the Lebesgue integral of nonnegative measurable functions (property 3), we have that ∫Af⁒𝑑μ=∫XΟ‡A⁒f⁒𝑑μ.

Let f:Xβ†’[-∞,∞] be a measurable function such that not both of ∫Af+⁒𝑑μ and ∫Af-⁒𝑑μ are infiniteMathworldPlanetmathPlanetmath. (Note that f+ and f- are defined in the entry Lebesgue integral.) Then ∫Af⁒𝑑μ is defined as ∫Af⁒𝑑μ:=∫Af+⁒𝑑μ-∫Af-⁒𝑑μ.

By the properties of the Lebesgue integral of Lebesgue integrable functions (property 3), we have that ∫Af⁒𝑑μ=∫XΟ‡A⁒f⁒𝑑μ.

Title Lebesgue integral over a subset of the measure space
Canonical name LebesgueIntegralOverASubsetOfTheMeasureSpace
Date of creation 2013-03-22 16:13:54
Last modified on 2013-03-22 16:13:54
Owner Wkbj79 (1863)
Last modified by Wkbj79 (1863)
Numerical id 7
Author Wkbj79 (1863)
Entry type Definition
Classification msc 26A42
Classification msc 28A25