modular discriminant
Definition 1.
Let be a lattice.
-
1.
Let . The Dedekind eta function

is defined to be
The Dedekind eta function should not be confused with the Weierstrass eta function, .
-
2.
The -invariant, as a function

of lattices, is defined to be:
where and are certain multiples

of the Eisenstein series

of weight and (see http://planetmath.org/encyclopedia/ExamplesOfEllipticFunctions.htmlthis entry).
-
3.
The function (delta function or modular discriminant) is defined to be
Let be the lattice generated by . The function for has a product expansion
| Title | modular discriminant |
| Canonical name | ModularDiscriminant |
| Date of creation | 2013-03-22 13:54:09 |
| Last modified on | 2013-03-22 13:54:09 |
| Owner | alozano (2414) |
| Last modified by | alozano (2414) |
| Numerical id | 6 |
| Author | alozano (2414) |
| Entry type | Definition |
| Classification | msc 33E05 |
| Synonym | delta function |
| Related topic | EllipticFunction |
| Related topic | JInvariant |
| Related topic | WeierstrassSigmaFunction |
| Related topic | Discriminant |
| Related topic | DiscriminantOfANumberField |
| Related topic | RamanujanTauFunction |
| Defines | modular discriminant |
| Defines | Dedekind eta function |