Weierstrass sigma function
Definition 1.
Let be a lattice. Let denote .
-
1.
The Weierstrass sigma function is defined as the product
-
2.
The Weierstrass zeta function is defined by the sum
Note that the Weierstrass zeta function is basically the derivative of the logarithm of the sigma function. The zeta function can be rewritten as:
where is the Eisenstein series of weight .
-
3.
The Weierstrass eta function is defined to be
(It can be proved that this is well defined, i.e. only depends on ). The Weierstrass eta function must not be confused with the Dedekind eta function.
Title | Weierstrass sigma function |
Canonical name | WeierstrassSigmaFunction |
Date of creation | 2013-03-22 13:54:06 |
Last modified on | 2013-03-22 13:54:06 |
Owner | alozano (2414) |
Last modified by | alozano (2414) |
Numerical id | 4 |
Author | alozano (2414) |
Entry type | Definition |
Classification | msc 33E05 |
Synonym | sigma function |
Synonym | zeta function |
Synonym | eta function |
Related topic | EllipticFunction |
Related topic | ModularDiscriminant |
Defines | Weierstrass sigma function |
Defines | Weierstrass zeta function |
Defines | Weierstrass eta function |