multinomial distribution


Let 𝐗=(X1,,Xn) be a random vector such that

  1. 1.

    Xi0 and Xi

  2. 2.

    X1++Xn=N, where N is a fixed integer

Then X has a multinomial distributionMathworldPlanetmath if there exists a parameter vector 𝝅=(π1,,πn) such that

  1. 1.

    πi0 and πi

  2. 2.

    π1++πn=1

  3. 3.

    X has a discrete probability distribution function f𝐗(𝒙) in the form:

    f𝐗(𝒙)=N!x1!xn!i=1nπixi

Remarks

  • E[𝐗]=N𝝅

  • Var[𝐗]=(vij), where

    vij={Nπi(1-πi)if i=j;-Nπiπjif ij.
  • When n=2, the multinomial distribution is the same as the binomial distribution

  • If X1,,Xn are mutually independent Poisson random variables with parameters λ1,,λn respectively, then the conditionalMathworldPlanetmathPlanetmath joint distributionPlanetmathPlanetmath of X1,,Xn given that X1++Xn=N is multinomial with parameters λi/λ, where λ=λi.

    Sketch of proof. Each Xi is distributed as:

    fXi(xi)=e-λiλixixi!

    The mutual independence of the Xi’s shows that the joint probability distribution of the Xi’s is given by

    f𝐗(𝒙)=i=1ne-λiλixixi!=e-λi=1nλixixi!,

    where 𝐗=(X1,,Xn), 𝒙=(x1,,xn) and λ=λ1++λn. Next, let X=X1++Xn. Then X is Poisson distributed with parameter λ (which can be shown by using inductionMathworldPlanetmath and the mutual independence of the Xi’s):

    fX(x)=e-λλxx!.

    The conditional probability distribution of X given that X=N is thus given by:

    f𝐗(𝒙X=N)=f𝐗(𝒙)fX(N)=(e-λi=1nλixixi!)/(e-λλNN!)=N!x1!xn!i=1n(λiλ)xi,

    where xi=N and that λi/λ=1.

Title multinomial distribution
Canonical name MultinomialDistribution
Date of creation 2013-03-22 14:33:35
Last modified on 2013-03-22 14:33:35
Owner CWoo (3771)
Last modified by CWoo (3771)
Numerical id 7
Author CWoo (3771)
Entry type Definition
Classification msc 60E05