multinomial distribution
Let 𝐗=(X1,…,Xn) be a random vector such that
-
1.
Xi≥0 and Xi∈ℤ
-
2.
X1+⋯+Xn=N, where N is a fixed integer
Then X has a multinomial distribution if there exists a parameter vector 𝝅=(π1,…,πn) such that
-
1.
πi≥0 and πi∈ℝ
-
2.
π1+⋯+πn=1
-
3.
X has a discrete probability distribution function f𝐗(𝒙) in the form:
f𝐗(𝒙)=N!x1!⋯xn!n∏i=1πxii
Remarks
-
•
E[𝐗]=N𝝅
-
•
Var[𝐗]=(vij), where
vij={Nπi(1-πi)if i=j;-Nπiπjif i≠j. -
•
When n=2, the multinomial distribution is the same as the binomial distribution
-
•
If X1,…,Xn are mutually independent Poisson random variables with parameters λ1,…,λn respectively, then the conditional
joint distribution
of X1,…,Xn given that X1+⋯+Xn=N is multinomial with parameters λi/λ, where λ=∑λi.
Sketch of proof. Each Xi is distributed as:
fXi(xi)=e-λiλxiixi! The mutual independence of the Xi’s shows that the joint probability distribution of the Xi’s is given by
f𝐗(𝒙)=n∏i=1e-λiλxiixi!=e-λn∏i=1λxiixi!, where 𝐗=(X1,…,Xn), 𝒙=(x1,…,xn) and λ=λ1+⋯+λn. Next, let X=X1+⋯+Xn. Then X is Poisson distributed with parameter λ (which can be shown by using induction
and the mutual independence of the Xi’s):
fX(x)=e-λλxx!. The conditional probability distribution of X given that X=N is thus given by:
f𝐗(𝒙∣X=N)=f𝐗(𝒙)fX(N)=(e-λn∏i=1λxiixi!)/(e-λλNN!)=N!x1!⋯xn!n∏i=1(λiλ)xi, where ∑xi=N and that ∑λi/λ=1.
Title | multinomial distribution |
---|---|
Canonical name | MultinomialDistribution |
Date of creation | 2013-03-22 14:33:35 |
Last modified on | 2013-03-22 14:33:35 |
Owner | CWoo (3771) |
Last modified by | CWoo (3771) |
Numerical id | 7 |
Author | CWoo (3771) |
Entry type | Definition |
Classification | msc 60E05 |