pointwise multiplication of a completely multiplicative function distibutes over convolution


Theorem.

Let f be a completely multiplicative functionMathworldPlanetmath and g and h be arithmetic functionsMathworldPlanetmath. Then f(g*h)=(fg)*(fh).

Proof.

Let n be a positive integer. Then

(f(g*h))(n) =f(n)(g*h)(n)
=f(n)d|ng(d)h(nd)
=d|nf(n)g(d)h(nd)
=d|nf(dnd)g(d)h(nd)
=d|nf(d)f(nd)g(d)h(nd)
=d|n(fg)(d)(fh)(nd)
=((fg)*(fh))(n).

Title pointwise multiplicationPlanetmathPlanetmath of a completely multiplicative function distibutes over convolution
Canonical name PointwiseMultiplicationOfACompletelyMultiplicativeFunctionDistibutesOverConvolution
Date of creation 2013-03-22 15:59:49
Last modified on 2013-03-22 15:59:49
Owner Wkbj79 (1863)
Last modified by Wkbj79 (1863)
Numerical id 8
Author Wkbj79 (1863)
Entry type Theorem
Classification msc 11A25
Related topic ArithmeticFunction
Related topic CompletelyMultiplicative
Related topic MultiplicativeFunction