practical number
A positive integer is called a practical number if every positive integer is a sum of distinct positive divisors of .
. An integer with primes and integers is practical if and only if and, for
where denotes the sum of the positive divisors of
Let be the counting function of practical numbers. Saias [2], using suitable sieve methods introduced by Tenenbaum [3, 4], proved a good estimate in terms of a Chebishev-type theorem: for suitable constants and ,
In [1] Melfi proved a Goldbach-type result showing that every even positive integer is a sum of two practical numbers, and that there exist infinitely many triplets of practical numbers of the form .
References
- 1 G. Melfi, On two conjectures about practical numbers, J. Number Theory 56 (1996), 205–210.
- 2 E. Saias, Entiers à diviseurs denses 1, J. Number Theory 62 (1997), 163–191.
- 3 G. Tenenbaum, Sur un problème de crible et ses applications, Ann. Sci. Éc. Norm. Sup. (4) 19 (1986), 1–30.
- 4 G. Tenenbaum, Sur un problème de crible et ses applications, 2. Corrigendum et étude du graphe divisoriel, Ann. Sci. Éc. Norm. Sup. (4) 28 (1995), 115–127.
Title | practical number |
---|---|
Canonical name | PracticalNumber |
Date of creation | 2013-03-22 14:12:17 |
Last modified on | 2013-03-22 14:12:17 |
Owner | mathcam (2727) |
Last modified by | mathcam (2727) |
Numerical id | 6 |
Author | mathcam (2727) |
Entry type | Definition |
Classification | msc 11A25 |