divisor theory


0.1 Divisibility in a monoid

In a commutative monoidPlanetmathPlanetmath ๐”‡, one can speak of divisibility: its element ๐”ž is divisible by its element ๐”Ÿ, iff โ€‰๐”ž=๐”Ÿโข๐” โ€‰ whereโ€‰ ๐” โˆˆ๐”‡.โ€‰ An element ๐”ญ of ๐”‡, distinct from the unity ๐”ข of ๐”‡, is called a prime elementMathworldPlanetmath of ๐”‡, when ๐”ญ is divisible only by itself and ๐”ข.โ€‰ The monoid ๐”‡ has a unique prime factorisation, if every element ๐”ž of ๐”‡ can be presented as a finite productPlanetmathPlanetmathPlanetmath โ€‰๐”ž=๐”ญ1โข๐”ญ2โขโ‹ฏโข๐”ญrโ€‰ of prime elements and this is unique up to the ๐”ญi; then we may say that ๐”‡ is a free monoid on the set of its prime elements.

If the monoid ๐”‡ has a unique prime factorisation, ๐”ข is divisible only by itself.โ€‰ Two elements of ๐”‡ have always a greatest common factor.โ€‰ If a product ๐”žโข๐”Ÿ is divisible by a prime element ๐”ญ, then at least one of ๐”ž and ๐”Ÿ is divisible by ๐”ญ.

0.2 Divisor theory of an integral domain

Let ๐’ช be an integral domainMathworldPlanetmath and ๐’ช* the set of its non-zero elements; this set forms a commutative monoid (with identityPlanetmathPlanetmathPlanetmathPlanetmath 1) with respect to the multiplication of ๐’ช.โ€‰ We say that the integral domain ๐’ช has a divisor theoryMathworldPlanetmath, if there is a commutative monoid ๐”‡ with unique prime factorisation and a homomorphismMathworldPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath โ€‰ ฮฑโ†ฆ(ฮฑ)โ€‰ from the monoid ๐’ช* into the monoid ๐”‡, such that the following three properties are true:

  1. 1.

    A divisibility (http://planetmath.org/DivisibilityInRings) ฮฑโˆฃฮฒ in ๐’ช* is valid iff the divisibility (ฮฑ)โˆฃ(ฮฒ) is valid in ๐”‡.

  2. 2.

    If the elements ฮฑ and ฮฒ of ๐’ช* are divisible by an element ๐”  of ๐”‡, then also ฮฑยฑฮฒ are divisible by ๐” โ€‰ (โ€˜โ€˜๐” โˆฃฮฑโ€™โ€™โ€‰ means thatโ€‰ ๐” โˆฃ(ฮฑ);โ€‰ in , 0 is divisible by every element of ๐”‡).

  3. 3.

    Ifโ€‰ {ฮฑโˆˆ๐’ชโขโ‹ฎโข๐”žโˆฃฮฑ}={ฮฒโˆˆ๐’ชโขโ‹ฎโข๐”Ÿโˆฃฮฒ},โ€„ thenโ€‰ ๐”ž=๐”Ÿ.

A divisor theory of ๐’ช is denoted byโ€„ ๐’ช*โ†’๐”‡.โ€‰ The elements of ๐”‡ are called divisorsMathworldPlanetmath and especially the divisors of the form (ฮฑ), whereโ€‰ ฮฑโˆˆ๐’ช*, principal divisors.โ€‰ The prime elements of ๐”‡ are prime divisorsPlanetmathPlanetmath.

By 1, it is easily seen that two principal divisors (ฮฑ) and (ฮฒ) are equal iff the elements ฮฑ and ฮฒ are associatesMathworldPlanetmath of each other.โ€‰ Especially, the units of ๐’ช determine the unit divisor ๐”ข.

0.3 Uniqueness theorems

Theorem 1.โ€‰ An integral domain ๐’ช has at most one divisor theory.โ€‰ In other words, for any pair of divisor theoriesโ€‰ ๐’ช*โ†’๐”‡โ€‰ andโ€‰ ๐’ช*โ†’๐”‡โ€ฒ, there is an isomorphismMathworldPlanetmathPlanetmath โ€‰ฯ†:๐”‡โ†’๐”‡โ€ฒโ€‰ such thatโ€‰ ฯ†โข((ฮฑ))=(ฮฑ)โ€ฒโ€‰ always when the principal divisorsโ€‰ (ฮฑ)โˆˆ๐”‡โ€‰ andโ€‰ (ฮฑ)โ€ฒโˆˆ๐”‡โ€ฒโ€‰ correspond to the same element ฮฑ of ๐’ช*.

Theorem 2.โ€‰ An integral domain ๐’ช is a unique factorisation domain (http://planetmath.org/UFD) if and only if ๐’ช has a divisor theoryโ€‰ ๐’ช*โ†’๐”‡โ€‰ in which all divisors are principal divisors.

Theorem 3.โ€‰ If the divisor theoryโ€‰ ๐’ช*โ†’๐”‡โ€‰ comprises only a finite number of prime divisors, then ๐’ช is a unique factorisation domain.

The proofs of those theorems are found in [1], which is available also in Russian (original), English and French.

References

  • 1 S. Borewicz & I. Safarevic: Zahlentheorie.โ€‰ Birkhรคuser Verlag. Basel und Stuttgart (1966).
  • 2 ะœ. ะœ. ะŸะพัั‚ะฝะธะบะพะฒ: ะ’ะฒะตะดะตะฝะธะตโ€‰ ะฒโ€‰ ั‚ะตะพั€ะธัŽโ€‰ ะฐะปะณะตะฑั€ะฐะธั‡ะตัะบะธั…โ€‰ ั‡ะธัะตะป. โ€‰ะ˜ะทะดะฐั‚ะตะปัŒัั‚ะฒะพโ€‰ โ€˜โ€˜ะะฐัƒะบะฐโ€™โ€™. ะœะพัะบะฒะฐโ€‰(1982).
Title divisor theory
Canonical name DivisorTheory
Date of creation 2013-03-22 17:59:03
Last modified on 2013-03-22 17:59:03
Owner pahio (2872)
Last modified by pahio (2872)
Numerical id 17
Author pahio (2872)
Entry type Definition
Classification msc 11A51
Classification msc 13A05
Related topic UniqueFactorizationAndIdealsInRingOfIntegers
Related topic IdealDecompositionInDedekindDomain
Related topic EisensteinCriterionInTermsOfDivisorTheory
Related topic DivisorsInBaseFieldAndFiniteExtensionField
Related topic ExponentOfField
Related topic ExponentValuation2
Related topic DedekindDomainsWithFinitelyManyPrimesArePIDs
Defines divisor
Defines prime divisor
Defines principal divisor
Defines unit divisor