proof of Van Aubel’s theorem


As in the figure, let us denote by u,v,w,x,y,z the areas of the six component trianglesMathworldPlanetmath. Given any two triangles of the same height, their areas are in the same proportion as their bases (Euclid VI.1). Therefore

y+zx=u+vw  w+xv=y+zu  u+vz=w+xy

and the conclusionMathworldPlanetmath we want is

y+z+uv+w+x+z+u+vw+x+y=y+zx.

Clearing the denominators, the hypotheses are

w(y+z) = x(u+v) (1)
y(u+v) = z(w+x) (2)
u(w+x) = v(y+z) (3)

which imply

vxz=uwy (4)

and the conclusion says that

x(wy¯+wz¯+uw+xy¯+xz¯+ux+y2¯+yz¯+uy
+vz+uv+v2+wz+uw+vw+xz+ux+vx)

equals

(y+z)(vw+vx+vy+w2+wx+wy+wx¯+x2¯+xy¯)

or equivalently (after cancelling the underlined terms)

x(uw+xz+ux+uy+vz+uv+v2+wz+uw+vw+ux+vx)

equals

(y+z)(vw+vx+vy+w2+wx+wy)=(y+z)(v+w)(w+x+y).

i.e.

x(u+v)(v+w+x)+x(xz+ux+uy+vz+wz+uw)=
(y+z)w(v+w+x)+(y+z)(vx+vy+wy)

i.e. by (1)

x(xz+ux+uy+vz+wz+uw)=(y+z)(vx+vy+wy)

i.e. by (3)

x(xz+uy+vz+wz)=(y+z)(vy+wy).

Using (4), we are down to

x2z+xuy+uwy+xwz=(y+z)y(v+w)

i.e. by (3)

x2z+vy(y+z)+xwz=(y+z)y(v+w)

i.e.

xz(x+w)=(y+z)yw.

But in view of (2), this is the same as (4), and the proof is completePlanetmathPlanetmathPlanetmathPlanetmathPlanetmath.

Remarks: Ceva’s theoremMathworldPlanetmath is an easy consequence of (4).

Title proof of Van Aubel’s theorem
Canonical name ProofOfVanAubelsTheorem
Date of creation 2013-03-22 13:58:00
Last modified on 2013-03-22 13:58:00
Owner mathcam (2727)
Last modified by mathcam (2727)
Numerical id 8
Author mathcam (2727)
Entry type Proof
Classification msc 51N20
Related topic VanAubelTheorem
Related topic ProofOfVanAubelTheorem