ring-finite integral extensions are module-finite
Theorem If is a subring of and are integral over , then is module-finite over .
Proof. If then , so spans over .
If , use induction on and multiply the spanning sets together.
| Title | ring-finite integral extensions are module-finite |
|---|---|
| Canonical name | RingfiniteIntegralExtensionsAreModulefinite |
| Date of creation | 2013-03-22 17:01:28 |
| Last modified on | 2013-03-22 17:01:28 |
| Owner | rm50 (10146) |
| Last modified by | rm50 (10146) |
| Numerical id | 6 |
| Author | rm50 (10146) |
| Entry type | Theorem |
| Classification | msc 16D10 |
| Classification | msc 13C05 |
| Classification | msc 13B02 |
| Related topic | ModuleFiniteExtensionsAreIntegral |