ring-finite integral extensions are module-finite
Theorem If is a subring of and are integral over , then is module-finite over .
Proof. If then , so spans over .
If , use induction on and multiply the spanning sets together.
Title | ring-finite integral extensions are module-finite |
---|---|
Canonical name | RingfiniteIntegralExtensionsAreModulefinite |
Date of creation | 2013-03-22 17:01:28 |
Last modified on | 2013-03-22 17:01:28 |
Owner | rm50 (10146) |
Last modified by | rm50 (10146) |
Numerical id | 6 |
Author | rm50 (10146) |
Entry type | Theorem |
Classification | msc 16D10 |
Classification | msc 13C05 |
Classification | msc 13B02 |
Related topic | ModuleFiniteExtensionsAreIntegral |