value of Dirichlet eta function at
The value
of the Dirichlet eta function![]()
can be found by using the Fourier cosine series
![]()
of the function
![]()
on the interval :
| (1) |
Substituting to the equation (1) yields
which we can solve to the form
| (2) |
This result could be obtained very simply by using the functional equation connecting Dirichlet eta function to Riemann zeta function

![]()
.
Combining the equation (2) with the result concerning the Riemann zeta function at 2 (http://planetmath.org/ValueOfTheRiemannZetaFunctionAtS2) shows that
| (3) |
| Title | value of Dirichlet eta function at |
|---|---|
| Canonical name | ValueOfDirichletEtaFunctionAtS2 |
| Date of creation | 2013-03-22 18:22:09 |
| Last modified on | 2013-03-22 18:22:09 |
| Owner | pahio (2872) |
| Last modified by | pahio (2872) |
| Numerical id | 8 |
| Author | pahio (2872) |
| Entry type | Result |
| Classification | msc 11M41 |
| Related topic | CosineAtMultiplesOfStraightAngle |
| Related topic | ValueOfTheRiemannZetaFunctionAtS2 |