Dirichlet eta function
For , the Dirichlet eta function![]()
is defined as
| (1) |
Let . For a positive real number the series converges by the alternating series test![]()
, by the second listed in the entry on Dirichlet series it converges for all with .
It can be shown that , where is the Riemann zeta function

![]()
. The pole of at is cancelled by the zero
of .
| Title | Dirichlet eta function |
|---|---|
| Canonical name | DirichletEtaFunction |
| Date of creation | 2013-03-22 14:31:28 |
| Last modified on | 2013-03-22 14:31:28 |
| Owner | Mathprof (13753) |
| Last modified by | Mathprof (13753) |
| Numerical id | 9 |
| Author | Mathprof (13753) |
| Entry type | Definition |
| Classification | msc 11M41 |
| Related topic | ZerosOfDirichletEtaFunction |