values of the Riemann zeta function in terms of Bernoulli numbers
Theorem.
Let be an even integer and let be the th Bernoulli number

![]()
. Let be the Riemann zeta function


![]()
. Then:
Moreover, by using the functional equation (http://planetmath.org/RiemannZetaFunction) , one calculates for all :
which shows that for odd. For even, one has:
Remark.
The zeroes of the zeta function![]()
shown above, for odd, are usually called the trivial zeroes of the Riemann zeta function, while the non-trivial zeroes are those in the critical strip
![]()
.
| Title | values of the Riemann zeta function in terms of Bernoulli numbers |
|---|---|
| Canonical name | ValuesOfTheRiemannZetaFunctionInTermsOfBernoulliNumbers |
| Date of creation | 2013-03-22 15:12:07 |
| Last modified on | 2013-03-22 15:12:07 |
| Owner | Mathprof (13753) |
| Last modified by | Mathprof (13753) |
| Numerical id | 7 |
| Author | Mathprof (13753) |
| Entry type | Theorem |
| Classification | msc 11M99 |
| Related topic | BernoulliNumber |
| Related topic | ValueOfTheRiemannZetaFunctionAtS2 |