algebraic sines and cosines


For any rational numberPlanetmathPlanetmathPlanetmath r, the sine and the cosine of the number rπ are algebraic numbersMathworldPlanetmath.

Proof.  According to the http://planetmath.org/node/11664parent entry, sinnφ and cosnφ can be expressed as polynomialsPlanetmathPlanetmath with integer coefficients of sinφ or cosφ, respectively, when n is an integer.  Thus we can write

sinnφ=P(sinφ),cosnφ=Q(cosφ),

where  P(x),Q(x)[x].  If  r=mn  where m,n are integers and  n0,  we have

P(sinrπ)=sinnrπ=sinmπ= 0,Q(cosrπ)=cosnrπ=cosmπ=±1,

i.e. both sinrπ and cosrπ satisfy an algebraic equation.  Q.E.D.

For example,

cos7φ= 64cos7φ-112cos5φ+56cos3φ-7cosφ,

whence we have the identity

64cos7π7-112cos5π7+56cos3π7-7cosπ7+1= 0,

and therefore cosπ7 is algebraic over .

Title algebraic sines and cosines
Canonical name AlgebraicSinesAndCosines
Date of creation 2013-03-22 18:51:27
Last modified on 2013-03-22 18:51:27
Owner pahio (2872)
Last modified by pahio (2872)
Numerical id 7
Author pahio (2872)
Entry type Corollary
Classification msc 11R04
Classification msc 11C08
Related topic RationalSineAndCosine
Related topic MultiplesOfAnAlgebraicNumber