annihilator
Let R be a ring, and suppose that M is a left R-module and N a right R-module.
Annihilator of a Subset of a Module
-
1.
If X is a subset of M, then we define the left annihilator of X in R:
l.ann(X)={r∈R∣rx=0 for all x∈X}. If a,b∈l.ann(X), then so are a-b and ra for all r∈R. Therefore, l.ann(X) is a left ideal
of R.
-
2.
If Y is a subset of N, then we define the right annihilator of Y in R:
r.ann(Y)={r∈R∣yr=0 for all y∈Y}. Like above, it is easy to see that r.ann(Y) is a right ideal of R.
Remark. l.ann(X) and r.ann(Y) may also be written as l.annR(X) and r.annR(Y) respectively, if we want to emphasize R.
Annihilator of a Subset of a Ring
-
1.
If Z is a subset of R, then we define the right annihilator of Z in M:
r.annM(Z)={m∈M∣zm=0 for all z∈Z}. If m,n∈r.annM(Z), then so are m-n and rm for all r∈R. Therefore, r.annM(Z) is a left R-submodule of M.
-
2.
If Z is a subset of R, then we define the left annihilator of Z in N:
l.annN(Z)={n∈N∣nz=0 for all z∈Z}. Similarly, it can be easily seen that l.annN(Z) is a right R-submodule of N.
Title | annihilator |
---|---|
Canonical name | Annihilator |
Date of creation | 2013-03-22 12:01:32 |
Last modified on | 2013-03-22 12:01:32 |
Owner | antizeus (11) |
Last modified by | antizeus (11) |
Numerical id | 8 |
Author | antizeus (11) |
Entry type | Definition |
Classification | msc 16D10 |
Synonym | left annihilator |
Synonym | right annihilator |
Related topic | JacobsonRadical |