area bounded by arc and two lines
Let r=r(φ) be the equation of a continuous curve in polar coordinates
and A be the area of the planar region by the curve and the line segments
from the origin to two points of the curve corresponding the polar angles
α and β (>α). Then the area can be calculated from
A=12∫βα[r(φ)]2𝑑φ. | (1) |
Proof. We fit between α and β a set of values
φ1<φ2<…<φn-1 | (2) |
and denote α=φ0, β=φn and think the line segments from the origin to each point of the curve corresponding the values φi. Then the region is divided into n parts. For every part we form inscribed and circumscribed
circular sector with the common tip in the origin and the radii along the lines
φ=φi. The union of the inscribed sectors is contained in the region and the union of the circumscribed sectors contains the region. The unions have the areas
n∑i=112r2i(φi-φi-1) and n∑i=112R2i(φi-φi-1), |
where ri means the least and Ri the greatest value of r(φ) on the interval [φi-1,φi]. Hence the area A is between these sums for any division of the interval [α,β] with the values of (2). But by the definition of the Riemann integral we know that there is only one real number having this property for any division and that also the definite integral
∫βα12[r(φ)]2𝑑φ=12∫βα[r(φ)]2𝑑φ |
is between those sums. Q.E.D.
Example 1. Determine the area A enclosed by the lemniscate of Bernoulli r=√cos2φ.
The portion of the lemniscate situated in the first quadrant
is gotten when φ gets the values from 0 to π4, whence we have
A4=12∫π40(a√cos2φ)2𝑑φ=a22∫π40cos2φdφ=a22π4/0sin2φ2=a24 |
and therefore the whole area in question is a2.
Example 2. Determine the area A enclosed by the logarithmic spiral r=Cekφ and two radii r1:= and (, ).
The (1) directly yields
References
- 1 Ernst Lindelöf: Johdatus korkeampaan analyysiin. Fourth edition. Werner Söderström Osakeyhtiö, Porvoo ja Helsinki (1956).
- 2 N. Piskunov: Diferentsiaal- ja integraalarvutus kõrgematele tehnilistele õppeasutustele. Kirjastus Valgus, Tallinn (1966).
Title | area bounded by arc and two lines |
---|---|
Canonical name | AreaBoundedByArcAndTwoLines |
Date of creation | 2013-03-22 19:05:15 |
Last modified on | 2013-03-22 19:05:15 |
Owner | pahio (2872) |
Last modified by | pahio (2872) |
Numerical id | 15 |
Author | pahio (2872) |
Entry type | Derivation |
Classification | msc 51-01 |
Classification | msc 53A04 |
Synonym | area in polar coordinates |
Related topic | SectorOfACircle |
Related topic | AreaOfPlaneRegion |
Related topic | SubstitutionNotation |