arithmetical ring


Theorem.

If R is a commutative ring, then the following three conditions are equivalentMathworldPlanetmathPlanetmathPlanetmathPlanetmath:

  • β€’

    For all ideals π”ž, π”Ÿ and 𝔠 of R, one has  π”žβˆ©(π”Ÿ+𝔠)=(π”žβˆ©π”Ÿ)+(π”žβˆ©π” ).

  • β€’

    For all ideals π”ž, π”Ÿ and 𝔠 of R, one has  π”ž+(π”Ÿβˆ©π” )=(π”ž+π”Ÿ)∩(π”ž+𝔠).

  • β€’

    For each maximal idealMathworldPlanetmath 𝔭 of R the set of all ideals of R𝔭, the localisation (http://planetmath.org/LocalizationMathworldPlanetmath) of R at  Rβˆ–π”­,  is totally ordered by set inclusion.

The ring R satisfying the conditions of the theoremMathworldPlanetmath is called an arithmetical ring.

Title arithmetical ring
Canonical name ArithmeticalRing
Date of creation 2013-03-22 15:23:58
Last modified on 2013-03-22 15:23:58
Owner PrimeFan (13766)
Last modified by PrimeFan (13766)
Numerical id 8
Author PrimeFan (13766)
Entry type Theorem
Classification msc 13A99
Related topic QuotientOfIdeals