ascending order


A sequence or arbitrary ordered set or one-dimensional array of numbers, a, is said to be in ascending orderPlanetmathPlanetmath if each aiai+1. For example, the Fibonacci sequenceMathworldPlanetmath is in ascending order: 1, 1, 2, 3, 5, 8, 13, 21 … The Perrin sequenceMathworldPlanetmath is not in ascending order: 3, 0, 2, 3, 2, 5, 5, 7, 10, 12, 17 …

In a trivial sense, the sequence of values of the sign function is in ascending order: … -1, -1, -1, 0, 1, 1, 1… When each ai<ai+1 in the sequence, set or array, then it can be said to be in strictly ascending order.

Title ascending order
Canonical name AscendingOrder
Date of creation 2013-03-22 16:06:39
Last modified on 2013-03-22 16:06:39
Owner CompositeFan (12809)
Last modified by CompositeFan (12809)
Numerical id 7
Author CompositeFan (12809)
Entry type Definition
Classification msc 06A99
Related topic DescendingOrder
Defines strictly ascending order