# Baire category theorem

In a non-empty complete metric space, any countable^{} intersection^{} of dense, open subsets is non-empty.

In fact, such countable intersections of dense, open subsets are dense. So the theorem holds also for any non-empty open subset of a complete metric space.

Alternative formulations:
Call a set *first category*, or a *meagre* set, if it is a countable union of nowhere dense sets, otherwise *second category*. The Baire category theorem^{} is often stated as “no non-empty complete metric space is of first category”, or, trivially, as “a non-empty, complete metric space is of second category”. In short, this theorem says that every nonempty complete metric space is a Baire space^{}.

In functional analysis, this important property of complete metric spaces forms the basis for the proofs of the important principles of Banach spaces^{}: the open mapping theorem^{} and the closed graph theorem^{}.

It may also be taken as giving a concept of “small sets”, similar to sets of measure zero: a countable union of these sets remains “small”. However, the real line $\mathbb{R}$ may be partitioned into a set of measure zero and a set of first category; the two concepts are distinct.

Note that, apart from the requirement that the set be a complete metric space, all conditions and conclusions^{} of the theorem are phrased topologically. This “metric requirement” is thus something of a disappointment. As it turns out, there are two ways to reduce this requirement.

First, if a topological space^{} $\mathcal{T}$ is homeomorphic to a non-empty open subset of a complete metric space, then we can transfer the Baire property through the homeomorphism, so in $\mathcal{T}$ too any countable intersection of open dense sets is non-empty (and, in fact, dense). The other formulations also hold in this case.

Second, the Baire category theorem holds for a locally compact, Hausdorff^{}^{1}^{1}Some authors only define a locally compact space to be a Hausdorff space; that is the sense required for this theorem. topological space $\mathcal{T}$.

Title | Baire category theorem |
---|---|

Canonical name | BaireCategoryTheorem |

Date of creation | 2013-03-22 12:43:32 |

Last modified on | 2013-03-22 12:43:32 |

Owner | Koro (127) |

Last modified by | Koro (127) |

Numerical id | 13 |

Author | Koro (127) |

Entry type | Theorem |

Classification | msc 54E52 |

Related topic | SardsTheorem |

Related topic | Meager |

Related topic | Residual |