Barnes’ integral representation of the hypergeometric function


When a,b,c,d are complex numbersMathworldPlanetmathPlanetmath and z is a complex number such that -π<arg(-z)<+π and C is a contour in the complex s-plane which goes from -i to +i chosen such that the poles of Γ(a+s)Γ(b+s) lie to the left of C and the poles of Γ(-s) lie to the right of C, then

CΓ(a+s)Γ(b+s)Γ(c+s)Γ(-s)(-z)s𝑑s=2πiΓ(a)Γ(b)Γ(c)F(a,b;c;z)
Title Barnes’ integral representation of the hypergeometric functionDlmfDlmfDlmfMathworldPlanetmath
Canonical name BarnesIntegralRepresentationOfTheHypergeometricFunction
Date of creation 2013-03-22 17:36:15
Last modified on 2013-03-22 17:36:15
Owner rspuzio (6075)
Last modified by rspuzio (6075)
Numerical id 4
Author rspuzio (6075)
Entry type Theorem
Classification msc 33C05