hypergeometric function


Let (a,b,c) be a triple of complex numbers with c not belonging to the set of negative integers. For a complex number w and a non negative integer n, use Pochhammer symbolDlmfMathworldPlanetmath (w)n , to denote the expression :

(w)n=w(w+1)(w+n-1).

The Gauss hypergeometric function, F12, is then defined by the following power series expansion :

F12(a,b;c;z)=n=0(a)n(b)n(c)nn!zn.
Title hypergeometric functionDlmfDlmfDlmfMathworld
Canonical name HypergeometricFunction
Date of creation 2013-03-22 14:27:48
Last modified on 2013-03-22 14:27:48
Owner rspuzio (6075)
Last modified by rspuzio (6075)
Numerical id 9
Author rspuzio (6075)
Entry type Definition
Classification msc 33C05
Related topic TableOfMittagLefflerPartialFractionExpansions
Defines Gauss hypergeometric function