basic properties of seminorms


Proposition 1.

Suppose p:VR is a seminormMathworldPlanetmath on a real (or complex) vector spaceMathworldPlanetmath V. Then

  1. 1.

    p(0)=0,

  2. 2.

    p(v)0 for all vV.

Proof.

Property 1 follows using homogeneity;

p(0)=p(00)=|0|p(0)=0.

Property 2 follows using sublinearity and Property 1;

0=p(0)=p(v-v)p(v)+p(-v)=2p(v).

Title basic properties of seminorms
Canonical name BasicPropertiesOfSeminorms
Date of creation 2013-03-22 14:38:57
Last modified on 2013-03-22 14:38:57
Owner matte (1858)
Last modified by matte (1858)
Numerical id 5
Author matte (1858)
Entry type Theorem
Classification msc 46B20