calculation of contour integral


We will determine the important complex integral

I:=C(z-z0)n𝑑z

where C is the circumference of the circle  |z-z0|=ϱ  taken anticlockwise and n an arbitrary integer.

Let’s take the “direction angle” of the radius of C as the parametre t, i.e.

t:=arg|z-z0|.

Then on C, we have

z-z0=ϱeit,0t2π

and

dz=iϱeitdt,(z-z0)n=ϱneint,

whence

I=02πϱneintiϱeit𝑑t=iϱn+102πei(n+1)t𝑑t.

In the case  n=-1  one gets trivially  I=2iπ.  If  n-1,  we obtain

I=iϱn+1/t=02πei(n+1)ti(n+1)=ϱn+1n+1(1-1)= 0,

using the fact that 2iπ is a period of the exponential functionDlmfDlmfMathworldPlanetmathPlanetmath (http://planetmath.org/PeriodicityOfExponentialFunction).

Hence we can write the result

C(z-z0)n𝑑z={2iπifn=-1,0  ifn{-1}.
Title calculation of contour integral
Canonical name CalculationOfContourIntegral
Date of creation 2013-03-22 19:14:16
Last modified on 2013-03-22 19:14:16
Owner pahio (2872)
Last modified by pahio (2872)
Numerical id 8
Author pahio (2872)
Entry type Example
Classification msc 30E20
Classification msc 30A99
Related topic AntiderivativeOfComplexFunction
Related topic SubstitutionNotation
Related topic ProofOfCauchyIntegralFormula