Cartesian product of vector spaces
Suppose V1,…,VN are vector spaces over a field 𝔽.
Then the Cartesian product V1×⋯×VN is a vector space
when addition and scalar multiplication is defined as follows
(u1,…,uN)+(v1,…,vN) | = | (u1+v1,…,uN+vN), | ||
k(u1,…,uN) | = | (ku1,…,kuN) |
for ui,vi∈Vi, k∈𝔽.
For example, the vector space structure of ℝn if defined as above.
Properties
-
1.
If Vi are vector spaces and Wi⊂Vi are subspaces
, then W1×⋯×WN is a vector subspace of V1×⋯×VN.
-
2.
The dimension
of V1×⋯×VN is .
Title | Cartesian product of vector spaces |
---|---|
Canonical name | CartesianProductOfVectorSpaces |
Date of creation | 2013-03-22 15:16:06 |
Last modified on | 2013-03-22 15:16:06 |
Owner | Mathprof (13753) |
Last modified by | Mathprof (13753) |
Numerical id | 8 |
Author | Mathprof (13753) |
Entry type | Definition |
Classification | msc 16-00 |
Classification | msc 13-00 |
Classification | msc 20-00 |
Classification | msc 15-00 |