casus irreducibilis
Let the polynomial
with complex coefficients be irreducible (http://planetmath.org/IrreduciblePolynomial2), i.e. irreducible in the field of its coefficients. If the equation can be solved algebraically (http://planetmath.org/AlgebraicallySolvable) and if all of its roots are real, then no root may be expressed with the numbers using mere real radicals (http://planetmath.org/NthRoot) unless the degree (http://planetmath.org/AlgebraicEquation) of the equation is an integer power (http://planetmath.org/GeneralAssociativity) of 2.
References
- 1 K. Väisälä: Lukuteorian ja korkeamman algebran alkeet. Tiedekirjasto No. 17. Kustannusosakeyhtiö Otava, Helsinki (1950).
| Title | casus irreducibilis |
|---|---|
| Canonical name | CasusIrreducibilis |
| Date of creation | 2013-03-22 15:21:00 |
| Last modified on | 2013-03-22 15:21:00 |
| Owner | pahio (2872) |
| Last modified by | pahio (2872) |
| Numerical id | 12 |
| Author | pahio (2872) |
| Entry type | Theorem |
| Classification | msc 12F10 |
| Related topic | RadicalExtension |
| Related topic | CardanosFormulae |
| Related topic | TakingSquareRootAlgebraically |
| Related topic | EulersDerivationOfTheQuarticFormula |