commuting matrices are simultaneously triangularizable


Theorem 1.

All matrices in the below are complex n×n matrices.
Let A,B be matrices and AB=BA. Then there exists a unitary matrixMathworldPlanetmath Q such that

QHAQ=T1 , QHBQ=T2

where H is the conjugate transposeMathworldPlanetmath and T1,T2, are upper triangular matricesMathworldPlanetmath.

Title commuting matrices are simultaneously triangularizable
Canonical name CommutingMatricesAreSimultaneouslyTriangularizable
Date of creation 2013-03-22 15:26:48
Last modified on 2013-03-22 15:26:48
Owner georgiosl (7242)
Last modified by georgiosl (7242)
Numerical id 12
Author georgiosl (7242)
Entry type Theorem
Classification msc 15A23
Related topic SimultaneousUpperTriangularBlockDiagonalizationOfCommutingMatrices