continuum


A continuumMathworldPlanetmathPlanetmath is a compactPlanetmathPlanetmath connectedPlanetmathPlanetmath topological spaceMathworldPlanetmath. Some authors impose additional conditions and require that the space be nondegenerate, HausdorffPlanetmathPlanetmath, or metric.

References

  • SS Lynn Arthur Steen and J. Arthur Seebach, Jr, Counterexamples in Topology, Springer-Verlag, 1978, p. 33
  • HY John G. Hocking, and Gail S. Young, Topology, Dover Publications, New York, 1988, p. 43
  • G Steven A. Gaal, Point Set Topology, Academic Press, New York, 1964, p. 103
  • MCG Michael C. Gemignani, Elementary Topology, 2nd ed. Dover Publications, New York, 1990, p. 202
  • NEW M.H.A. Newman, Elements of the Topology of Plane Sets of Points, Cambridge University Press, 1964, p. 71
  • W Stephen Willard, General Topology, Addison-Wesley, Reading, MA, 1970, p. 203
  • WI Raymond Louis Wilder, Topology of Manifolds, Amer. Math. Society, Providence, RI, 1963, p. 36
  • MI J. van Mill, G.M. Reed, editors, Open Problems in Topology, North-Holland, Amsterdam, 1990, p. 305
Title continuum
Canonical name Continuum
Date of creation 2013-03-22 18:37:22
Last modified on 2013-03-22 18:37:22
Owner Mathprof (13753)
Last modified by Mathprof (13753)
Numerical id 5
Author Mathprof (13753)
Entry type Definition
Classification msc 54F15