convolution method
Let f, g, and h be multiplicative functions such that f=g*h, where * denotes the convolution (http://planetmath.org/MultiplicativeFunction) of g and h. The convolution method is a way to ∑n≤xf(n) by using the fact that f=g*h:
∑n≤xf(n)=∑n≤x∑d|ng(d)h(nd)=∑d≤x∑m≤xdg(d)h(m)=∑d≤xg(d)∑m≤xdh(m)
This method for calculating ∑n≤xf(n) is advantageous when the sums in of g and h are easier to handle.
As an example, the sum ∑n≤xμ2(n) will be calculated using the convolution method.
Since μ2=μ2*ε=μ2*(μ*1)=(μ2*μ)*1, the functions μ2*μ and 1 can be used.
To use the convolution method, a nice way to (μ2*μ)(n) needs to be found. Note that μ2*μ is multiplicative (http://planetmath.org/MultiplicativeFunction), so it only needs to be evaluated at prime powers.
Let k∈ℕ. Then
(μ2*μ)(pk)=k∑j=0μ2(pj)μ(pk-j)=μ(pk)+μ(pk-1)={0if k≠2-1if k=2. |
Since μ2*μ is multiplicative (http://planetmath.org/MultiplicativeFunction), then (μ2*μ)(n)={0if n is not a squareμ(√n)if n is a square.
The convolution method yields:
∑n≤xμ2(n)=∑d≤x(μ2*μ)(d)∑m≤xd1=∑d≤x(μ2*μ)(d)(xd+O(1))=∑a≤√xμ(a)(xa2+O(1))=x∑a≤√xμ(a)a2+O(∑a≤√x|μ(a)|)=x(∑a∈ℕμ(a)a2-∑a>√xμ(a)a2)+O(∑a≤√x1)=x∑a∈ℕμ(a)a2+O(x∑a>√x|μ(a)a2|)+O(√x)=6π2x+O(x∑a>√x1a2)+O(√x)=6π2x+O(x(1√x))+O(√x)=6π2x+O(√x)
Title | convolution method |
---|---|
Canonical name | ConvolutionMethod |
Date of creation | 2013-03-22 15:58:24 |
Last modified on | 2013-03-22 15:58:24 |
Owner | Wkbj79 (1863) |
Last modified by | Wkbj79 (1863) |
Numerical id | 13 |
Author | Wkbj79 (1863) |
Entry type | Definition |
Classification | msc 11N37 |
Related topic | DirichletHyperbolaMethod |
Related topic | MoebiusFunction |
Related topic | DisplaystyleYOmeganOleftFracxlogXy12YRightFor1LeY2 |
Related topic | DisplaystyleXlog2xOleftsum_nLeX2OmeganRight |