digamma and polygamma function
The digamma function is defined as the logarithmic derivative
of the gamma function
:
ψ(z)=ddzlogΓ(z)=Γ′(z)Γ(z). |
Likewise the polygamma functions are defined as higher order logarithmic derivatives of the gamma function:
ψ(n)(z)=dndznlogΓ(z). |
These equations enjoy functional equations which are closely related to those of the gamma function:
ψ(z+1) | =ψ(z)+1z | ||
ψ(1-z) | =ψ(z)+πcotπz | ||
ψ(2z) | =12ψ(z)+12ψ(z+12)+log2 | ||
ψ(n)(z+1) | =ψ(n)(z)+(-1)nn!zn+1 |
These functions have poles at the negative integers and can be expressed as partial fraction series:
ψ(z)=-γ-1z+∞∑k=1(1k-1z+k), | (1) |
ψ(n)(z)=(-1)nn!∞∑k=01(z+k)n | (2) |
Here, γ is Euler–Mascheroni constant (http://planetmath.org/EulerMascheroniConstant). Substituting z=1 to (1), one gets the value
Γ′(1)=-γ. |
Title | digamma and polygamma function |
---|---|
Canonical name | DigammaAndPolygammaFunction |
Date of creation | 2013-03-22 15:53:21 |
Last modified on | 2013-03-22 15:53:21 |
Owner | rspuzio (6075) |
Last modified by | rspuzio (6075) |
Numerical id | 13 |
Author | rspuzio (6075) |
Entry type | Definition |
Classification | msc 30D30 |
Classification | msc 33B15 |
Defines | digamma function |
Defines | polygamma function |