Dynkin system


Let Ξ© be a set, and 𝒫⁒(Ξ©) be the power setMathworldPlanetmath of Ξ©. A Dynkin system on Ξ© is a set π’ŸβŠ‚π’«β’(Ξ©) such that

  1. 1.

    Ξ©βˆˆπ’Ÿ

  2. 2.

    A,Bβˆˆπ’Ÿβ’Β and ⁒AβŠ‚Bβ‡’Bβˆ–Aβˆˆπ’Ÿ

  3. 3.

    Anβˆˆπ’Ÿ,AnβŠ‚An+1,nβ‰₯1⇒⋃k=1∞Akβˆˆπ’Ÿ.

Let FβŠ‚π’«β’(Ξ©), and consider

Ξ“={X:XβŠ‚π’«β’(Ξ©)⁒ is a Dynkin system and ⁒FβŠ‚X}. (1)

We define the intersectionMathworldPlanetmath of all the Dynkin systems containing F as

π’Ÿβ’(F):=β‹‚XβˆˆΞ“X (2)

One can easily verify that π’Ÿβ’(F) is itself a Dynkin system and that it contains F. We call π’Ÿβ’(F) the Dynkin system generated by F. It is the β€œsmallest” Dynkin system containing F.

A Dynkin system which is also Ο€-system (http://planetmath.org/PiSystem) is a Οƒ-algebra (http://planetmath.org/SigmaAlgebra).

Title Dynkin system
Canonical name DynkinSystem
Date of creation 2013-03-22 12:21:19
Last modified on 2013-03-22 12:21:19
Owner mathwizard (128)
Last modified by mathwizard (128)
Numerical id 9
Author mathwizard (128)
Entry type Definition
Classification msc 03E20
Classification msc 28A60
Related topic DynkinsLemma