Processing math: 57%

Dynkin system


Let Ξ© be a set, and 𝒫(Ξ©) be the power setMathworldPlanetmath of Ξ©. A Dynkin system on Ξ© is a set π’ŸβŠ‚π’«(Ξ©) such that

  1. 1.

    Ξ©βˆˆπ’Ÿ

  2. 2.

    A,Bβˆˆπ’Ÿ and AβŠ‚Bβ‡’Bβˆ–Aβˆˆπ’Ÿ

  3. 3.

    Anβˆˆπ’Ÿ,AnβŠ‚An+1,nβ‰₯1β‡’β‹ƒβˆžk=1Akβˆˆπ’Ÿ.

Let FβŠ‚π’«(Ξ©), and consider

Ξ“={X:XβŠ‚π’«(Ξ©) is a Dynkin system and FβŠ‚X}. (1)

We define the intersectionMathworldPlanetmath of all the Dynkin systems containing F as

π’Ÿ(F):= (2)

One can easily verify that π’Ÿβ’(F) is itself a Dynkin system and that it contains F. We call π’Ÿβ’(F) the Dynkin system generated by F. It is the β€œsmallest” Dynkin system containing F.

A Dynkin system which is also Ο€-system (http://planetmath.org/PiSystem) is a Οƒ-algebra (http://planetmath.org/SigmaAlgebra).

Title Dynkin system
Canonical name DynkinSystem
Date of creation 2013-03-22 12:21:19
Last modified on 2013-03-22 12:21:19
Owner mathwizard (128)
Last modified by mathwizard (128)
Numerical id 9
Author mathwizard (128)
Entry type Definition
Classification msc 03E20
Classification msc 28A60
Related topic DynkinsLemma