Euler reflection formula


Theorem 1

(Euler Reflection Formula)

Γ(x)Γ(1-x)=πsin(πx)

Proof: We have

1Γ(x)=xeγxn=1((1+xn)e-x/n)

and thus

1Γ(x)1Γ(-x)=-x2eγxe-γxn=1((1+xn)e-x/n)((1-xn)ex/n)=-x2n=1(1-x2n2)

But Γ(1-x)=-xΓ(-x) and thus

1Γ(x)1Γ(1-x)=xn=1(1-x2n2)

Now, using the formula (http://planetmath.org/ExamplesOfInfiniteProducts) for sinx/x, we have

sin(πx)=πxn=1(1-x2n2)

so that

1Γ(x)1Γ(1-x)=sin(πx)π

and the result follows.

Title Euler reflection formula
Canonical name EulerReflectionFormula
Date of creation 2013-03-22 16:23:37
Last modified on 2013-03-22 16:23:37
Owner rm50 (10146)
Last modified by rm50 (10146)
Numerical id 5
Author rm50 (10146)
Entry type Theorem
Classification msc 30D30
Classification msc 33B15