examples of torsion subgroups of elliptic curves


Mazur’s theorem shows that given an elliptic curveMathworldPlanetmath defined over the rationals, the only possible torsion subgroups are the following:

/N with 1<N<11 or N=12
/2/2N with 0<N<5

Here we show examples of curves with the torsion subgroups mentioned above:

CURVE TORSION SUBGROUP GENERATORSPlanetmathPlanetmathPlanetmath
y2=x3-2 trivial 𝒪
y2=x3+8 /2 [[-2,0]]
y2=x3+4 /3 [[0,2]]
y2=x3+4x /4 [[2,4]]
y2-y=x3-x2 /5 [[0,1]]
y2=x3+1 /6 [[2,3]]
y2=x3-43x+166 /7 [[3,8]]
y2+7xy=x3+16x /8 [[-2,10]]
y2+xy+y=x3-x2-14x+29 /9 [[3,1]]
y2+xy=x3-45x+81 /10 [[0,9]]
y2+43xy-210y=x3-210x2 /12 [[0,210]]
y2=x3-4x /2/2 [[2,0],[0,0]]
y2=x3+2x2-3x /4/2 [[3,6],[0,0]]
y2+5xy-6y=x3-3x2 /6/2 [[-3,18],[2,-2]]
y2+17xy-120y=x3-60x2 /8/2 [[30,-90],[-40,400]]
Title examples of torsion subgroups of elliptic curves
Canonical name ExamplesOfTorsionSubgroupsOfEllipticCurves
Date of creation 2013-03-22 14:22:44
Last modified on 2013-03-22 14:22:44
Owner alozano (2414)
Last modified by alozano (2414)
Numerical id 5
Author alozano (2414)
Entry type Example
Classification msc 14H52
Related topic ArithmeticOfEllipticCurves