Faà di Bruno’s formula
Faà di Bruno’s formula is a generalization of the chain rule to higher order derivatives which expresses the derivative of a composition of functions as a series of products of derivatives:
This formula was discovered by Francesco Faà di Bruno in the 1850s and can be proved by induction on the order of the derivative.
References
- 1 Faà di Bruno, C. F.. “Sullo sviluppo delle funzione.” Ann. di Scienze Matem. et Fisiche di Tortoloni 6 (1855): 479-480
- 2 Faà di Bruno, C. F.. “Note sur un nouvelle formule de calcul différentiel.” Quart. J. Math. 1 (1857): 359-360
- 3 H. Figueroa & J. M. Gracia-Bondía, “Combinatorial Hopf Algebras in Quantum Field Theory I” Rev. Math. Phys. 17 (2005): 881 - 975
Title | Faà di Bruno’s formula |
---|---|
Canonical name | FaaDiBrunosFormula |
Date of creation | 2013-03-22 16:38:57 |
Last modified on | 2013-03-22 16:38:57 |
Owner | rspuzio (6075) |
Last modified by | rspuzio (6075) |
Numerical id | 5 |
Author | rspuzio (6075) |
Entry type | Definition |
Classification | msc 16W30 |
Synonym | Faa di Bruno’s formula |
Synonym | Faà di Bruno formula |
Synonym | Faa di Bruno formula |