formal power series converges if and only if it converges along every line


Suppose T(x) denotes the formal power seriesMathworldPlanetmath αaαxα, using the multi-index notation, where x=(x1,,xN) and aα. Fixing vN and we can also talk of the formal power series in t

T(tv)=αaα(tv)α=αaαvαt|α|=k=0(|α|=kaαvα)tk.
Theorem.

Suppose T(x) is a formal power series in xRN. Suppose T(tv) is a convergentMathworldPlanetmath power seriesMathworldPlanetmath in tR for all vRN. Then T is convergent.

The other direction, if T(x) converges then tT(tv) converges, is obvious.

References

  • 1 M. Salah Baouendi, Peter Ebenfelt, Linda Preiss Rothschild. , Princeton University Press, Princeton, New Jersey, 1999.
Title formal power series converges if and only if it converges along every line
Canonical name FormalPowerSeriesConvergesIfAndOnlyIfItConvergesAlongEveryLine
Date of creation 2013-03-22 17:42:11
Last modified on 2013-03-22 17:42:11
Owner jirka (4157)
Last modified by jirka (4157)
Numerical id 5
Author jirka (4157)
Entry type Theorem
Classification msc 13H05
Classification msc 13B35
Classification msc 13J05
Classification msc 13F25