-equivariant
Let be a compact Lie group acting linearly on and let be a mapping defined as . Then is -equivariant if
for all , and all .
Therefore if commutes with then is -equivariant.
[GSS]
References
- GSS Golubitsky, Martin. Stewart, Ian. Schaeffer, G. David.: Singularities and Groups in Bifurcation Theory (Volume II). Springer-Verlag, New York, 1988.
Title | -equivariant |
---|---|
Canonical name | Gammaequivariant |
Date of creation | 2013-03-22 13:53:20 |
Last modified on | 2013-03-22 13:53:20 |
Owner | mathcam (2727) |
Last modified by | mathcam (2727) |
Numerical id | 7 |
Author | mathcam (2727) |
Entry type | Definition |
Classification | msc 37C80 |
Classification | msc 22-00 |