equivariant
Let G be a group, and X and Y left (resp. right) homogeneous spaces of G. Then a map f:X→Y is called equivariant if g(f(x))=f(gx) (resp. (f(x))g=f(xg)) for all g∈G.
Title | equivariant |
---|---|
Canonical name | Equivariant |
Date of creation | 2013-03-22 13:56:45 |
Last modified on | 2013-03-22 13:56:45 |
Owner | bwebste (988) |
Last modified by | bwebste (988) |
Numerical id | 4 |
Author | bwebste (988) |
Entry type | Definition |
Classification | msc 20A05 |