general formulas for integration


  1. 1.

    ∫f′⁒(x)⁒𝑑x=f⁒(x)+C

  2. 2.

    βˆ«Ξ»β’π‘‘x=λ⁒x+C

  3. 3.

    ∫λ⁒f⁒(x)⁒𝑑x=λ⁒∫f⁒(x)⁒𝑑x

  4. 4.

    ∫(f⁒(x)+g⁒(x))⁒𝑑x=∫f⁒(x)⁒𝑑x+∫g⁒(x)⁒𝑑x

  5. 5.

    ∫f⁒(x)⁒g′⁒(x)⁒𝑑x=f⁒(x)⁒g⁒(x)-∫g⁒(x)⁒f′⁒(x)⁒𝑑x

  6. 6.

    ∫g⁒(f⁒(x))⁒f′⁒(x)⁒𝑑x=G⁒(f⁒(x))+C   if   G′⁒(t)=g⁒(t)

  7. 7.

    ∫[f⁒(x)]r⁒f′⁒(x)⁒𝑑x=1r+1⁒[f⁒(x)]r+1+C   for   rβ‰ -1

  8. 8.

    ∫f′⁒(x)f⁒(x)⁒𝑑x=ln⁑|f⁒(x)|+C

  9. 9.

    ∫ef⁒(x)⁒f′⁒(x)⁒𝑑x=ef⁒(x)+C

  10. 10.

    ∫f⁒(x)(f⁒(x)+a)⁒(f⁒(x)+b)⁒𝑑x=aa-b⁒∫d⁒xf⁒(x)+a-ba-b⁒∫d⁒xf⁒(x)+b

  11. 11.

    ∫sin⁑(ω⁒x+Ο†)⁒𝑑x=-cos⁑(ω⁒x+Ο†)Ο‰+C

  12. 12.

    ∫cos⁑(ω⁒x+Ο†)⁒𝑑x=sin⁑(ω⁒x+Ο†)Ο‰+C

  13. 13.

    ∫sinh⁑(ω⁒x+Ο†)⁒𝑑x=cosh⁑(ω⁒x+Ο†)Ο‰+C

  14. 14.

    ∫cosh⁑(ω⁒x+Ο†)⁒𝑑x=sinh⁑(ω⁒x+Ο†)Ο‰+C

  15. 15.

    ∫a⁒x+b⁒𝑑x=23⁒a⁒(a⁒x+b)⁒a⁒x+b+C

  16. 16.

    ∫a⁒x2+b⁒𝑑x=x2⁒a⁒x2+b+b2⁒a⁒ln⁑(x⁒a+a⁒x2+b)+C

  17. 17.

    ∫sinn⁑x⁒cosm⁑x⁒d⁒x=-sinn-1⁑x⁒cosm+1⁑xm+n+n-1m+n⁒∫sinn-2⁑x⁒cosm⁑x⁒d⁒x

  18. 18.

    ∫sinn⁑x⁒cosm⁑x⁒d⁒x=sinn+1⁑x⁒cosm-1⁑xm+n+m-1m+n⁒∫sinn⁑x⁒cosm-2⁑x⁒d⁒x

Some series-formed antiderivatives:

∫f⁒(x)⁒𝑑x=C+f⁒(0)⁒x+f′⁒(0)2!⁒x2+f′′⁒(0)3!⁒x3+…
∫f(x)dx=C+xf(x)-x22!fβ€²(x)+x33!fβ€²β€²(x)-+…
∫UVdx=UV(-1)-Uβ€²V(-2)+Uβ€²β€²V(-3)-+…=βˆ‘n=0∞(-1)nU(n)V(-n-1)

The derivativesMathworldPlanetmath with negative order (http://planetmath.org/HigherOrderDerivatives) that V has been integrated repeatedly.

Title general formulas for integration
Canonical name GeneralFormulasForIntegration
Date of creation 2013-03-22 17:39:31
Last modified on 2013-03-22 17:39:31
Owner pahio (2872)
Last modified by pahio (2872)
Numerical id 16
Author pahio (2872)
Entry type Topic
Classification msc 26A36
Synonym integration formulas
Related topic TableOfDerivatives
Related topic IntegralTables
Related topic IntegrationByParts
Related topic ReductionFormulasForIntegrationOfPowers