general formulas for integration
-
1.
β«fβ²(x)πx=f(x)+C
-
2.
β«Ξ»πx=Ξ»x+C
-
3.
β«Ξ»f(x)πx=Ξ»β«f(x)πx
-
4.
β«(f(x)+g(x))πx=β«f(x)πx+β«g(x)πx
-
5.
β«f(x)gβ²(x)πx=f(x)g(x)-β«g(x)fβ²(x)πx
-
6.
β«g(f(x))fβ²(x)πx=G(f(x))+Cββ ifββ Gβ²(t)=g(t)
-
7.
β«[f(x)]rfβ²(x)πx=1r+1[f(x)]r+1+Cββ forββ rβ -1
-
8.
β«fβ²(x)f(x)πx=ln|f(x)|+C
-
9.
β«ef(x)fβ²(x)πx=ef(x)+C
-
10.
β«f(x)(f(x)+a)(f(x)+b)πx=aa-bβ«dxf(x)+a-ba-bβ«dxf(x)+b
-
11.
β«sin(Οx+Ο)πx=-cos(Οx+Ο)Ο+C
-
12.
β«cos(Οx+Ο)πx=sin(Οx+Ο)Ο+C
-
13.
β«sinh(Οx+Ο)πx=cosh(Οx+Ο)Ο+C
-
14.
β«cosh(Οx+Ο)πx=sinh(Οx+Ο)Ο+C
-
15.
β«βax+bπx=23a(ax+b)βax+b+C
-
16.
β«βax2+bπx=x2βax2+b+b2βaln(xβa+βax2+b)+C
-
17.
β«sinnxcosmxdx=-sinn-1xcosm+1xm+n+n-1m+nβ«sinn-2xcosmxdx
-
18.
β«sinnxcosmxdx=sinn+1xcosm-1xm+n+m-1m+nβ«sinnxcosm-2xdx
Some series-formed antiderivatives:
β«f(x)πx=C+f(0)x+fβ²(0)2!x2+fβ²β²
The derivatives with negative order (http://planetmath.org/HigherOrderDerivatives) that has been integrated repeatedly.
Title | general formulas for integration |
---|---|
Canonical name | GeneralFormulasForIntegration |
Date of creation | 2013-03-22 17:39:31 |
Last modified on | 2013-03-22 17:39:31 |
Owner | pahio (2872) |
Last modified by | pahio (2872) |
Numerical id | 16 |
Author | pahio (2872) |
Entry type | Topic |
Classification | msc 26A36 |
Synonym | integration formulas |
Related topic | TableOfDerivatives |
Related topic | IntegralTables |
Related topic | IntegrationByParts |
Related topic | ReductionFormulasForIntegrationOfPowers |