# generalized Riemann hypothesis

This generalization^{} of the Riemann hypothesis^{} to arbitrary Dedekind zeta functions that for any number field $K$, the only zeroes $s$ of the Dedekind zeta function ${\zeta}_{K}(s)$ that lie in the strip $0\le \mathrm{\Re}s\le 1$ $\mathrm{\Re}s=\frac{1}{2}$.

Title | generalized Riemann hypothesis^{} |
---|---|

Canonical name | GeneralizedRiemannHypothesis |

Date of creation | 2013-03-22 13:54:31 |

Last modified on | 2013-03-22 13:54:31 |

Owner | mathcam (2727) |

Last modified by | mathcam (2727) |

Numerical id | 5 |

Author | mathcam (2727) |

Entry type | Definition |

Classification | msc 11M06 |