germ
GermFernando Sanz Gámiz
Definition 1 (Germ).
Let and be manifolds and . We consider all smooth mappings , where is some open neighborhood of in . We define an equivalence relation on the set of mappings considered, and we put if there is some open neighborhood of with . The equivalence class of a mapping is called the germ of f at x, denoted by or, sometimes, , and we write
Remark 1.
Germs arise naturally in differential topolgy. It is very convenient when dealing with derivatives at the point , as every mapping in a germ will have the same derivative values and properties in , and hence can be identified for such purposes: every mapping in a germ gives rise to the same tangent vector of at .
Title | germ |
---|---|
Canonical name | Germ |
Date of creation | 2013-03-22 17:25:36 |
Last modified on | 2013-03-22 17:25:36 |
Owner | fernsanz (8869) |
Last modified by | fernsanz (8869) |
Numerical id | 5 |
Author | fernsanz (8869) |
Entry type | Definition |
Classification | msc 53B99 |
Related topic | TangentSpace |
Defines | Germ |
Defines | function germ. |