Hardy-Littlewood maximal theorem


There is a constant K>0 such that for each Lebesgue integrableMathworldPlanetmath function fL1(n), and each t>0,

m({x:Mf(x)>t})Ktf1=Ktn|f(x)|𝑑x,

where Mf is the Hardy-Littlewood maximal function of f.

Remark. The theorem holds for the constant K=3n.

Title Hardy-Littlewood maximal theorem
Canonical name HardyLittlewoodMaximalTheorem
Date of creation 2013-03-22 13:27:33
Last modified on 2013-03-22 13:27:33
Owner Koro (127)
Last modified by Koro (127)
Numerical id 4
Author Koro (127)
Entry type Theorem
Classification msc 28A15
Classification msc 28A25
Related topic HardyLittlewoodMaximalOperator
Defines Hardy-Littlewood theorem