homotopy equivalence
Definition Suppose that and are topological spaces![]()
and
is a continuous map.
If there exists a
continuous map such that
(i.e. is http://planetmath.org/node/1584homotopic
![]()
to the identity
mapping on ),
and , then
is a homotopy equivalence
![]()
.
This homotopy equivalence is sometimes called
strong homotopy equivalence to distinguish it from
weak homotopy equivalence.
If there exist a homotopy equivalence between the topological spaces and , we say that and are homotopy equivalent, or that and are of the same homotopy type. We then write .
0.0.1 Properties
-
1.
Any homeomorphism is obviously a homotopy equivalence with .
-
2.
For topological spaces, homotopy equivalence is an equivalence relation

.
-
3.
A topological space is (by definition) contractible

, if is homotopy equivalent to a point, i.e., .
References
- 1 A. Hatcher, Algebraic Topology, Cambridge University Press, 2002. Also available http://www.math.cornell.edu/ hatcher/AT/ATpage.htmlonline.
| Title | homotopy equivalence |
| Canonical name | HomotopyEquivalence |
| Date of creation | 2013-03-22 12:13:22 |
| Last modified on | 2013-03-22 12:13:22 |
| Owner | matte (1858) |
| Last modified by | matte (1858) |
| Numerical id | 14 |
| Author | matte (1858) |
| Entry type | Definition |
| Classification | msc 55P10 |
| Related topic | HomotopyOfMaps |
| Related topic | WeakHomotopyEquivalence |
| Related topic | Contractible |
| Related topic | HomotopyInvariance |
| Related topic | ChainHomotopyEquivalence |
| Related topic | PathConnectnessAsAHomotopyInvariant |
| Related topic | TheoremOnCWComplexApproximationOfQuantumStateSpacesInQAT |
| Defines | homotopy equivalent |
| Defines | homotopically equivalent |
| Defines | homotopy type |
| Defines | strong homotopy equivalence |