illustration of integration techniques


The following integralDlmfPlanetmath is an example that illustrates many integration techniques.

Problem. Determine the antiderivative of tanx.

. We start with substitution (http://planetmath.org/IntegrationBySubstitution):

u =tanx
u2 =tanx
2udu =sec2xdx

Using the Pythagorean identity tan2x+1=sec2x, we obtain:

2udu =(tan2x+1)dx
2udu =(u4+1)dx
2uu4+1du =dx

Thus,

tanx𝑑x =u2uu4+1𝑑u
=2u2(u2-u2+1)(u2+u2+1)𝑑u.

For this last integral, we use the method of partial fractionsPlanetmathPlanetmath (http://planetmath.org/ALectureOnThePartialFractionDecompositionMethod):

2u2(u2-u2+1)(u2+u2+1) =A+Buu2-u2+1+C+Duu2+u2+1
2u2 =(A+Bu)(u2+u2+1)+(C+Du)(u2-u2+1)
=(B+D)u3+(A+C+(B-D)2)u2+(B+D+(A-C)2)u+A+C

From this, we obtain the following system of equations:

{B+D=0A+C+(B-D)2=2(A-C)2+B+D=0A+C=0

This can be into two smaller systems of equations:

{A+C=0A2-C2=0
{B+D=0B2-D2=2

It is clear that the first system yields A=C=0, and it can easily be verified that B=12 and D=-12. Therefore,

tanx𝑑x =12uu2-u2+1𝑑u-12uu2+u2+1𝑑u
=12uu2-u2+12+12𝑑u-12uu2+u2+12+12𝑑u
=12u(u-12)2+12𝑑u-12u(u+12)2+12𝑑u.

Now we make the following substitutions:

v=u-12w=u+12dv=dudw=du

Note that we have v+12=u=w-12. Therefore,

tanx𝑑x =12v+12v2+12𝑑v-12w-12w2+12𝑑w
=12vv2+12𝑑v-12dvv2+12-12ww2+12𝑑w+12dww2+12.

For the first and third integrals in the last expression, note that the numerator is a of the derivative of the denominator. For these, we use the formula

kf(x)f(x)𝑑x=kln|f(x)|.

For the second and fourth integrals in the last expression, we use the formula

dxx2+a2=1aarctan(xa)

with a=12. Hence,

tanx𝑑x =122ln(v2+12)+12arctan(v2)-122ln(w2+12)+12arctan(w2)+K
=122ln(v2+12w2+12)+12(arctan(v2)+arctan(w2))+K
=122ln((u-12)2+12(u+12)2+12)+12(arctan[(u-12)2]+arctan[(u+12)2])+K
=122ln(u2-u2+1u2+u2+1)+12[arctan(u2-1)+arctan(u2+1)]+K
=122ln(tanx-2tanx+1tanx+2tanx+1)+12[arctan(2tanx-1)+arctan(2tanx+1)]+K.

(We use K for the constant of integration to avoid confusion with C from the system of equations.)

Title illustration of integration techniques
Canonical name IllustrationOfIntegrationTechniques
Date of creation 2013-03-22 17:50:16
Last modified on 2013-03-22 17:50:16
Owner Wkbj79 (1863)
Last modified by Wkbj79 (1863)
Numerical id 13
Author Wkbj79 (1863)
Entry type Example
Classification msc 26A36