integration of fraction power expressions
The antiderivatives of every expression containing fraction powers can not be expressed by using elementary functions![]()
. However, there are after making a substitution.
-
•
, where means a rational function of its arguments. If the common denominator of the fraction power exponents

is , the substitution
changes each exponent to an integer and the whole integrand to a rational function in the variable .
Example. For the least common multiple of the denominators of and is 4, whence we make the substitution , . Then we obtain
-
•
In , correspondently the substitution
changes the integrand to a rational function.
Example. For we substitute , , getting
References
- 1 N. Piskunov: Diferentsiaal- ja integraalarvutus kõrgematele tehnilistele õppeasutustele. Viies, täiendatud trükk. Kirjastus “Valgus”, Tallinn (1965).
| Title | integration of fraction power expressions |
|---|---|
| Canonical name | IntegrationOfFractionPowerExpressions |
| Date of creation | 2013-03-22 17:50:33 |
| Last modified on | 2013-03-22 17:50:33 |
| Owner | pahio (2872) |
| Last modified by | pahio (2872) |
| Numerical id | 7 |
| Author | pahio (2872) |
| Entry type | Application |
| Classification | msc 26A36 |
| Related topic | FractionPower |
| Related topic | RationalFunction |
| Related topic | IntegrationBySubstitution |
| Related topic | SubstitutionForIntegration |