## You are here

Homeinvariant polynomial

## Primary tabs

# invariant polynomial

An *invariant polynomial* is a polynomial $P$ that is invariant under a (compact) Lie group $\Gamma$ acting on a vector space $V$. Therefore $P$ is $\Gamma$-invariant polynomial if $P(\gamma x)=P(x)$ for all $\gamma\in\Gamma$ and $x\in V$.

# References

- GSS Golubitsky, Martin. Stewart, Ian. Schaeffer, G. David: Singularities and Groups in Bifurcation Theory (Volume II). Springer-Verlag, New York, 1988.

Type of Math Object:

Definition

Major Section:

Reference

Groups audience:

## Mathematics Subject Classification

13A50*no label found*

- Forums
- Planetary Bugs
- HS/Secondary
- University/Tertiary
- Graduate/Advanced
- Industry/Practice
- Research Topics
- LaTeX help
- Math Comptetitions
- Math History
- Math Humor
- PlanetMath Comments
- PlanetMath System Updates and News
- PlanetMath help
- PlanetMath.ORG
- Strategic Communications Development
- The Math Pub
- Testing messages (ignore)

- Other useful stuff

## Recent Activity

Oct 21

new question: Prime numbers out of sequence by Rubens373

Oct 7

new question: Lorenz system by David Bankom

Oct 19

new correction: examples and OEIS sequences by fizzie

Oct 13

new correction: Define Galois correspondence by porton

Oct 7

new correction: Closure properties on languages: DCFL not closed under reversal by babou

new correction: DCFLs are not closed under reversal by petey

Oct 2

new correction: Many corrections by Smarandache

Sep 28

new question: how to contest an entry? by zorba

new question: simple question by parag

new question: Prime numbers out of sequence by Rubens373

Oct 7

new question: Lorenz system by David Bankom

Oct 19

new correction: examples and OEIS sequences by fizzie

Oct 13

new correction: Define Galois correspondence by porton

Oct 7

new correction: Closure properties on languages: DCFL not closed under reversal by babou

new correction: DCFLs are not closed under reversal by petey

Oct 2

new correction: Many corrections by Smarandache

Sep 28

new question: how to contest an entry? by zorba

new question: simple question by parag