isolated
Let X be a topological space, let S⊂X, and let x∈S. The point x is said to be an isolated point of S if there exists an open set U⊂X such that U∩S={x}.
The set S is isolated or discrete if every point in S is an isolated point.
Title | isolated |
---|---|
Canonical name | Isolated |
Date of creation | 2013-03-22 12:05:59 |
Last modified on | 2013-03-22 12:05:59 |
Owner | djao (24) |
Last modified by | djao (24) |
Numerical id | 8 |
Author | djao (24) |
Entry type | Definition |
Classification | msc 54A05 |
Synonym | discrete set |
Defines | isolated set |
Defines | isolated point |